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Abstract—Computer audition (CA) has experienced a fast
development in the past decades by leveraging advanced signal
processing and machine learning techniques. In particular, for
its noninvasive and ubiquitous character by nature, CA-based
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applications in healthcare have increasingly attracted attention
in recent years. During the tough time of the global crisis caused
by the coronavirus disease 2019 (COVID-19), scientists and engi-
neers in data science have collaborated to think of novel ways in
prevention, diagnosis, treatment, tracking, and management of
this global pandemic. On the one hand, we have witnessed the
power of 5G, Internet of Things, big data, computer vision, and
artificial intelligence in applications of epidemiology modeling,
drug and/or vaccine finding and designing, fast CT screening,
and quarantine management. On the other hand, relevant stud-
ies in exploring the capacity of CA are extremely lacking and
underestimated. To this end, we propose a novel multitask speech
corpus for COVID-19 research usage. We collected 51 con-
firmed COVID-19 patients’ in-the-wild speech data in Wuhan
city, China. We define three main tasks in this corpus, i.e., three-
category classification tasks for evaluating the physical and/or
mental status of patients, i.e., sleep quality, fatigue, and anxiety.
The benchmarks are given by using both classic machine learn-
ing methods and state-of-the-art deep learning techniques. We
believe this study and corpus cannot only facilitate the ongoing
research on using data science to fight against COVID-19, but
also the monitoring of contagious diseases for general purpose.

Index Terms—Computer audition, coronavirus disease 2019
(COVID-19), deep learning Internet of Medical Things (IoMT),
machine learning,

I. INTRODUCTION

T THE time of writing this article, coronavirus disease

2019 (COVID-19) is affecting more than 200 coun-
tries and regions, with more than 37 million confirmed cases
and more than 1 million deaths globally [1]. To combat
this unprecedented crisis caused by the virus now officially
named as SARS-CoV-2 by the World Health Organization
(WHO), scientists across different fields are working together
to make efforts in epidemiology prediction, clinical diag-
nosis and treatment, drug and/or vaccine discovery, social
distancing management and monitoring, and further counter-
measures. In particular, artificial intelligence (AI) and related
signal processing (SP) and machine learning (ML) techniques
have shown promising power and potential in the past sev-
eral months [2], [3]. Moreover, the fast developing and still
ongoing changing deep learning (DL) technologies [4] can
generate more opportunities when getting more and more
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available data in the broader COVID-19 research commu-
nity. Computer vision (CV) and its related techniques are
mostly used in current state of the art due to its contribution
for a fast and accurate assistive check of the chest CT
screening. Li et al. proposed a DL model called COVID-19
detection neural network (COVNet), which can achieve a sen-
sitivity of 90.0% and a specificity of 96.0 % for detecting
COVID-19 [5]. The database they collected consisted of 4356
chest CT exams from 3322 patients. Furthermore, more avail-
able DL models, e.g., COVID-CAPS [6], COVID-Net [7], and
COVID-ResNet [8], were provided to help clinical fast diag-
nosis and management. These DL models all had achieved
encouraging results (with an accuracy more than 90 %) by
employing different architectures of the convolutional neural
networks (CNNs) [9]. In addition, we can see other contri-
butions toward fighting against COVID-19 by leveraging the
power of Al Ge et al. [10] investigated the ML and statistical
methods for a data-driven paradigm in the drug discovery for
COVID-19. Ong et al. [11] found the capacity of ML tools
to predict COVID-19 vaccine candidates. Al-qaness et al. [12]
studied ML models in epidemiology related to COVID-19,
i.e., building an ML model to forecast the confirmed cases
of the upcoming ten days. Yan et al. employed a multi-
tree XGBoost algorithm to predict the disease’s mortality
from a database of blood samples (n = 485) collected from
COVID-19 patients [13]. They found that lactic dehydrogenase
(LDH), lymphocyte, and high-sensitivity C-reactive protein
(hs-CRP) are the selected three biomarkers that can predict
the mortality of individual patients more than ten days in
advance with more than 90.0 % accuracy. Additionally, with
the popularity of advanced technologies in 5G, Internet of
Things (IoT), and smart phones, Al-enabled methods can be
applied to more public services, such as quarantine manage-
ment, early diagnosis, and prevention of spread [14]-[16].
Recently, Shuja et al. [17] published a comprehensive survey
on open access databases for facilitating data-driven methods
for COVID-19 research. They give an excellent summary of
the existing data modalities and ML/DL models and indicate
the challenges in this field.

Nevertheless, the works on exploring computer audition
(CA) to fight the COVID-19 spread are largely lacking and
underestimated even though its noninvasive and ubiquitous
character by nature should indicate a promising potential. To
this end, we first gave a perspective in detail about the oppor-
tunities and challenges of CA for the COVID-19 research
in [18]. Moreover, we propose in this study using real-world
data to validate the ideas and show the capacity of CA that
makes it ready for joining this battle between humans and
virus. The main contributions of this work can be summarized
as follows. First, we propose a novel speech corpus, which
is named the multitask speech corpus for COVID-19 (MSC-
COVID-19). To the best of our knowledge, MSC-COVID-19 is
the first multitask database and related investigation on using
CA for diagnosis and management of COVID-19 suffers, not
only for their physical healthcare but also the mental status.
The proposed MSC-COVID-19 can facilitate the emotion-
aware Internet of Medical Things (IoMT) for mental state
assessment during the pandemic. Second, we conduct a series
of benchmark experiments using both classic ML methods and
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state-of-the-art DL models. The baseline results are intended
to be helpful and beneficial for a broad scientific community
of combating contagious diseases by leveraging the power of
Al and CA. Third, as one of the ongoing advanced research
projects focused on data science for COVID-19, it can con-
tribute to other fields in designing methodologies, paradigms,
and database establishment and sharing.

The remainder of this article will be organized as follows.
First, the background and related work will be introduced
in Section II. Then, we describe the details of the database,
benchmark methods, and toolkits in Section III. The experi-
mental results will be given in Section IV and followed by
a discussion in Section V. Finally, we conclude this work in
Section VI.

II. BACKGROUND AND MOTIVATION

CA is defined as an interdisciplinary subject, which involves
advanced SP and ML technologies to sense, perceive, pro-
cess, and synthesize acoustic data for computers [19]. The
past decades have witnessed the fast development of CA and
its successful applications in the healthcare domain, e.g., heart
sound recognition [20] and snore sound classification [21]. As
indicated by Schuller et al. [18], potential CA-based applica-
tions for fighting the ongoing COVID-19 global spread can
be summarized by two main directions, i.e., speech and sound
analysis.

For speech analysis, it can be highly related to the
field of computational paralinguistics [22] and the rele-
vant well-documented competitive challenges, e.g., as in
the INTERSPEECH computational paralinguistics challenge
(COMPARE) [23]. Based on the clinical characteristics of the
COVID-19 patients [24], one finds fever, dry cough, fatigue,
headache, myalgia/arthralgia, and shortness of breath as typi-
cal symptoms. Thus, the first thing that comes into one’s mind
might be the detection of speech under a cold [25]. In the
ongoing COMPARE 2020 challenge, the continuous assess-
ment of breathing patterns is proposed [26]. Moreover, auto-
matically recognizing speech under a pain symptom [27], [28]
could be useful for an early warning. It is also found that
COVID-19 patients should have a lack of appetite [29], which
can be detected via the eating behavior analysis while speak-
ing [30]. Sleepiness assessment can be implemented in both
a binary classification task [31] and a regression estima-
tion task (with Karolinska sleepiness scale) [32]. Considering
the high mortality risk among the elderly group (a slightly
higher mortality rate in male individuals) [24], age and gen-
der information could be of interest to be identified by
speech [33], [34]. Children are not within the high risk group,
whereas the relevant long-term effects are still unknown and
cannot be overlooked [35]. In particular, infant sounds could
be the only acoustical factor for analyzing and understanding
their status and behavior [32], [36]. Besides, some comorbidi-
ties may lead to high risks of mortality by COVID-19 [24],
which can be evaluated by speech analysis if the individuals
are suffering from head-and-neck cancer [37], asthma [38], or
smoking habits [39]. Apart from the aforementioned individ-
ual aspects, social effects by COVID-19 can trigger another
issue, e.g., the monitoring, management, and evaluation of the
social distancing and quarantine. The social isolation of elderly
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may generate a serious public mental health issue, which is
discussed as an emotion recognition task included in this year’s
COMPARE challenge [26]. Speaker identification and counting
could be used for monitoring the social distancing, which can
be implemented easily via smartphones [40]. Deception and
sincerity [41] can be targeted when a person was sent to quar-
antine. The detection of speech with or without a mask [26]
can also contribute to an efficient social prevention of the
COVID-19 spread.

For sound analysis, the sound generated by the human
body can be the first thing taken into account. Automatic
recognition of coughs [42]-[44] can be used as important
early screening marker implemented in smart phone audio
applications. Furthermore, CA can be used to analyze and
recognize the respiratory sounds and lung sounds of patients
with pneumonia [45], which could even be easily observed
by the prevalent devices, e.g., smartphones [46]. The snore
sound analysis [47], [48], which aims to find the pathological
changes in the upper airway, may also facilitate the relevant
evaluation of sleep of the COVID-19 patients. The association
of the cardiac injury with mortality was found in COVID-19
patients [20], [49], which makes the heart sound recognition
task useful in an early monitoring process. Among with others,
the sound and audio analysis technologies, such as 3-D audio
localization [50] and hearing local proximity [51], can be used
for monitoring the social distancing and providing warnings.

A direct inspiration of using CA for the COVID-19 research
is to evaluate whether we could develop a diagnosis method
less expensive and time consuming than the presently com-
mon polymerase chain reaction (PCR) and/or CT chest tests.
Imran et al. [52] proposed an app to build an Al-enabled pre-
liminary diagnosis method for COVID-19 via cough sounds.
They indicate a very promising result with an accuracy above
90 % in an overall recognition of coughs by COVID-19, per-
tussis, bronchitis, and healthy subjects. These results are quite
promising and encouraging, whereas some limitations and con-
straints still need to be addressed as suggested in [52]. We
think that guaranteeing an accurate diagnosis based on col-
lected cough data from COVID-19 patients and finding the
distinguishing characteristics between COVID-19 coughs and
other coughs are the two most difficult factors that have to
be addressed. Besides, a CA-based diagnosis method may
not become a gold standard in clinical practice due to PCR
and/or CT chest tests being widely used and regarded as a
convincing diagnosis method. However, CA-based methods
can facilitate a noninvasive, convenient, and cheap real-time
monitoring system for both confirmed COVID-19 patients and
such individuals who are forced into a quarantine (e.g., 14
days at home/hotel). Not only the physical symptoms (e.g.,
fever, pain, and fatigue) but also their mental status (e.g., anx-
iety) are essential for COVID-19-related management in real
practice. In particular, for the elderly who are living alone,
one may need a 24x7 healthcare system during this global
pandemic time. In our recent feasibility study, the elderlies’
behavior information can be used to predict their mental sta-
tus [53]. Motivated by these achievements and opportunity
mentioned previously, we want to make a novel exploration
of CA for the analysis of speech to recognize COVID-19
and monitor patient wellbeing, which can be considered as
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another possible modality to be used in a sophisticated Al-
based diagnosis, treatment, and management paradigm. A pilot
study was shown in [54], which gave a promising preliminary
result. However, that study was only validated by simple ML
methods without involving the state-of-the-art works. Also, the
severity estimation was derived from the number of days in
hospitalization with no medical gold standard. In this work, we
first introduce the MSC-COVID-19 in a comprehensive way.
The successful experiences and open toolkits used in the afore-
mentioned challenges will then be considered and applied,
for the first time, to this database. For differences between
the one proposed in this study and the early work [54], we
briefly summarize as follows. First, we conducted a rigor-
ous preprocessing stage of the audio recordings. Specifically,
we filtered some interferences in the low frequency band of
the raw audio recordings, which were found to affect the
final learning performance of models in our initial experi-
ments. Second, the data partitioning is different. In [54], the
experiments were executed in a leave-one-subject-out (LOSO)
cross-validation evaluation whereas a train/dev/test partition
was established in this study. The LOSO partitioning can ren-
der the final performance higher compared to the proposed
study. Nevertheless, we think this study contributes to a more
standardized way by considering reproducibility aspects and
computational effort reality. Third, we excluded the severity
task (adopted in [54]) in this study because the annotation
of severity in [54] was based on the days of being hospi-
talized, which cannot be an objective and convincing metric.
Overall, we think this proposed database can be suitable for
future study usage and is more suitable than the one in [54] to
become a future publicly used COVID-19 research resource.

III. MATERIALS AND METHODS

In this section, we first give the key information of the estab-
lished database. Then, we introduce the benchmark methods
and toolkits used in this study.

A. MSC-COVID-19

1) Data Collection: All the participants involved were
informed that their voice data will be used only for research
purposes. Their agreements for this study were recorded as
one of the five following original speech phrases. The data
were collected in-the-wild (Fig. 1): we asked the participants
to speak five sentences (with neutral contextual meaning). At
the same time, three self-report questions were answered by
the participants regarding their sleep quality, fatigue, and anx-
iety, with a discrete score representing levels 1 to 3. The
COVID-19 patients’ data were collected from March 20 to
March 26 in 2020. All the patients were confirmed by PCR
test and CT chest test. We used smartphones (iPhone 6 with 16-
GB storage) to record all the patients’ voices via the WeChat
App.

Following, we give examples of the recorded sentences for
COVID-19 patients.

) 4REYYYYHEMMADDH -

2) FFEEE B AE S AT 5 M RAH KA 5 -

3) XRHAERAEDRK .

4) FARMEE SRS BT -
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Fig. 1. MSC-COVID-19 database collection environment. The speech data of
the confirmed COVID-19 patients are recorded via a smart phone (iPhone 6)
by WeChat App.

5) SRIRFTEX-
(translated into English)

1) Today is MM (Month) DD (Day) YYYY (Year).

2) I agree to use my voice for coronavirus related research

purposes.

3) Today is the Dth day since I stayed in the hospital.

4) I wish I could rehabilitate and leave the hospital soon.

5) The weather today is X (e.g., sunny).

2) Data Preprocessing: As described in [54], we executed
a series of data preprocessing stages before we established
the “standard” MSC-COVID-19, which includes data cleans-
ing, voice activity detection, speaker diarisation, and speech
transcription. First, we excluded recordings of too low quality
(e.g., the level of speech is low compared to the back-
ground noise). Then, we removed the nonspeech parts from
each recording, which results in maintaining only the seg-
ments, including voice (e.g., speech, breathing, and coughing)
from the recordings. The segments containing solely the tar-
get patient and scripted content (e.g., excluding laughing)
were kept. Finally, we obtain 260 audio recordings from 51
COVID-19 patients. We understand that the size of the data in
the current study is quite limited. But at the same time, this is
highly validated data as opposed to the concurrent low-control
crowdsourcing efforts rendering this data unique to date. To
attenuate the effects of the audio recording equipment, back-
ground noise condition, and the level of the recording, all files
were first high-pass filtered to eliminate low-frequency back-
ground noise (cutoff frequency: 120 Hz, 10th-order Chebyshev
filter) and then their waveforms were normalized individually
(peak amplitude set to —3 dB).

3) Tasks Definition: We define three tasks for the MSC-
COVID-19 benchmark setup. First, we consider three cat-
egories of Sleep Quality: Good (labeled as “1”), Normal
(labeled as “2”), and Bad (labeled as “3”’) should be clas-
sified from the speech data of COVID-19 patients. Second,
the Fatigue Degree should be grouped into: Mild (labeled as
“1”), Moderate (labeled as “2”), and Severe (labeled as “3”).
Finally, an estimation of the Anxiety Degree should be
made as: Mild (labeled as “1”), Moderate (labeled as “2”),
and Severe (labeled as “3”). We name these three tasks: S
(three-class classification), F (three-class classification), and
A (three-class classification) in the following description.

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 21, NOVEMBER 1, 2021

TABLE I
NUMBER [#] OF INSTANCES IN THE DATA PARTITIONS OF
MSC-COVID-19. (a) SLEEP QUALITY ESTIMATION
TASK. (b) FATIGUE ESTIMATION TASK.
(¢) ANXIETY ESTIMATION TASK

(a)

Train Dev  Test z
Good 41 27 32 100
Normal 31 10 5 46
Bad 74 19 21 114
Total 146 56 58 260
(b)
Train Dev  Test z
Mild 22 10 22 54
Moderate 83 22 26 131
Severe 41 24 10 75
Total 146 56 58 260
(©)
Train Dev  Test z
Mild 15 10 16 41
Moderate 99 30 21 150
Severe 32 16 21 69
Total 146 56 58 260

4) Data Partitioning: Considering the gender, age, and
annotation distribution (see Fig. 2), we split the overall data
into train(ing), dev(elopment), and test sets (Table I). All the
ML/DL models’ hyperparameters are optimized on the dev set
and applied for training the final model on a fusion of the train
and dev sets, evaluated on the test set.

B. Benchmark Methods and Toolkits

1) Large-Scale Acoustic Features: In the paradigm of clas-
sic ML, features representing acoustic properties are essential
for further model building. These features, e.g., Mel-frequency
cepstral coefficients (MFCCs), are human hand-crafted need-
ing specific domain knowledge. We use the standard large-
scale COMPARE [55] feature set in this study extracted by
our open-source toolkit OPENSMILE [56], [57], for its pop-
ularity as a standard feature extractor in our previous body
of sound analysis tasks, e.g., snore sound [58] and heart
sound [20]. The COMPARE feature set contains 6373 static
features resulting from calculating the statistical function-
als over low-level descriptors (LLDs) extracted from frames
(60-ms size with 10-ms hop size) of the audio files. As a kind
of suprasegmental features [55], functionals can represent
higher statistical information from a given chunk of the sig-
nal, and makes the feature set independent of the audio length
(see Fig. 3), which is needed for a static classifier, e.g., sup-
port vector machine (SVM) [59]. The details of LLDs and
the corresponding functionals can be seen in Tables II and III,
respectively.

2) Bag-of-Audio-Words Approach: Different from the
aforementioned functionals, the Bag-of-Audio-Words (BoAW)
approach can extract higher representations from the
whole training set per subject rather than only one
instance. The term BoAW was derived from the Bag-
of-Words (BoW) approach [60], which was successfully
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Train Dev Test
(a)

Fig. 2.
(b) Distribution of Gender.

frame-level LLDs

functionals

Fig. 3. Scheme of the statistical functionals approach. The frame-level LLDs
(e.g., MFCCs) are first extracted from the speech signal. Then, a series of
statistical functionals (e.g., max., min., mean, etc.) can be calculated from
these LLDs, as scalars independent of the length of the instances.

TABLE 11
LLDS FOR COMPARE FEATURE SET. RASTA: RELATIVE SPECTRAL
TRANSFORM; HNR: HARMONICS TO NOISE RATIO; RMSE:
ROOT MEAN-SQUARE ENERGY; AND SHS: SUBHARMONIC
SUMMATION. DETAILS CAN BE FOUND IN [55]

55 Spectral LLDs Group

MEFCCs 1-14 Cepstral
Psychoacoustic sharpness, harmonicity Spectral
RASTA-filtered auditory spectral bands 1-26 (0-8kHz) | Spectral
Spectral energy 250-650 Hz, 1 k—4kHz Spectral
Spectral flux, centroid, entropy, slope Spectral
Spectral roll-off point 0.25, 0.5, 0.75, 0.9 Spectral
Spectral variance, skewness, kurtosis Spectral
6 Voicing related LLDs \ Group

Fo (SHS and Viterbi smoothing) Prosodic

Voice Quality
Voice Quality

Probability of voicing
log HNR, jitter (local and &), shimmer (local)

4 Energy related LLDs | Group

RMSE, zero-crossing rate Prosodic
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic

applied in the domain of natural language processing [61]
and computer vision [62], [63]. Fig. 4 shows the scheme of
the chosen BoAW approach. First, a codebook is generated
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(b)

Age and gender distribution of MSC-COVID-19. There is no considerable difference between train, dev, and test sets. (a) Distribution of Age.

TABLE III
FUNCTIONALS APPLIED TO LLDS IN THE COMPARE FEATURE SET. NOTE
THAT SOME FUNCTIONALS OF THIS TABLE MAY OR MAY NOT BE USED
TO ALL OF THE LLDS LISTED IN TABLE II. DETAILS CAN
BE FOUND IN [55]

Functionals

Temporal centroid

Peak mean value and distance to arithmetic mean

Mean and standard deviation of peak to peak distances
Peak and valley range (absolute and relative)
Peak-valley-peak slopes mean and standard deviation
Segment length mean, minimum, maximum, standard deviation
Up-level time 25 %, 50 %, 75 %, 90 %

Rise time, left curvature time

Linear prediction gain and coefficients 1-5

Arithmetic or positive arithmetic mean

Root-quadratic mean, flatness

Standard deviation, skewness, kurtosis, quartiles 1-3
Inter-quartile ranges 1-2, 2-3, 1-3,

99-th and 1-st percentile, range of these

Relative position of maximum and minimum value

Range (difference between maximum and minimum values)
Linear regression slope, offset

Linear regression quadratic error

Quadratic regression coefficients

Quadratic regression quadratic error

|

LLDs

—

©w
E
&
=4
8

uopesipepuElS

‘uornerudn)
wes3oistH 2 OA

Fig. 4. Processing chain of the BoOAW approach. The term frequency his-
tograms are regarded as the higher representations extracted from LLDs for
further ML/DL models.

from the acoustic LLDs/deltas via a random sampling process
(the seed is set be a constant to make the study reproducible)
following the initialization step of k-means++ clustering [64].
Then, each LLD/delta is assigned to the ten audio words
from the codebook having the lowest Euclidean distance when
calculating the histograms. In particular for this study, both
BoAW representations from the LLDs and their deltas are
concatenated. Finally, a logarithmic term frequency weight-
ing is used to compress the numeric range of the resulting
histograms. The LLDs and their corresponding deltas are
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Heart Sound Spectrogram

M 4’."

Fig. 5. Scheme of the deep spectrum transfer learning approach. In this
paradigm, speech segments are first transformed to spectrograms. Then, a
pretrained deep CNN model (e.g., AlexNet) can extract higher representa-
tions from these spectrograms. Finally, a classifier (e.g., SVM) can make the
predictions based on those higher representations.

pre-trained CNNs |
— =B

fully connected layer |

reconstruction

Linear Projection

decoder
initial state

encoder
final state

Encoder RNN Decoder RNN

Fully Connected Layer

0 fo -ty fha

expected decoder outputs

ty Hhooe bt
input sequence

Fig. 6. Scheme of the recurrent autoencoder-based S2SAE approach. In this
approach, higher representations are learned in an unsupervised scenario. The
process of training the network is to minimize the root mean-square errors
between the input sequence and the reconstruction. The activations of the
fully connected layer are regarded as the high-level representations of the
input sequence when the training is complete.

extracted by the OPENSMILE toolkit [57] with the COMPARE
feature set as was detailed above. For the BoAW implemen-
tation, the OPENXBOW toolkit [65] is used. We investigate
125, 250, 500, 1000, and 2000 for optimizing the codebook
size N.

3) Transfer Learning: In this transfer learning (TL) [66]
paradigm, audio signals are first transformed to spectrograms.
Then, the high-level representations of the spectrograms can
be extracted from the activations of the fully connected layers
of a pretrained deep CNN [9]. Thus, a classifier can perform
the classification task by using the extracted high-level rep-
resentations. Motivated by the previous success of this deep
TL method on snore sound [67], heart sound [68], and speech
with and w/o mask [69] tasks, we consider investigating it
for the MSC-COVID-19 tasks. The speech signals are trans-
formed into Mel-spectrograms (128 Mel frequency bands are
computed) using a Hanning window with 32-ms width and
16-ms overlap (Fig. 5). Several kinds of CNN architectures
can be employed for high-level representation extraction (the
activations of the “avg_pool” layer of the network). Finally,
an SVM is used as a classifier to predict the target labels.
We investigate ResNet50 [70], VGG 16 [71], VGG 19 [71],
AlexNet [72], and GoogLeNet [73] as pretrained models. The
DEEPSPECTRUM [67] toolkit is used for the TL models’
implementation.

4) Sequence-to-Sequence Autoencoder Method: In this
sequence-to-sequence autoencoder (S2SAE) method (see
Fig. 6), the first step is the same as the previously proposed
TL method, Mel-scale spectrograms are generated from the
speech data. Then, a distinct recurrent S2SAE is trained
on each of those sets of spectrograms in an unsupervised
scenario, i.e., without any labels. Finally, the learned high-level
representations of the a spectrogram are concatenated to form
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Fig. 7. Scheme of the end-to-end (e2e) learning approach. DL, in essence,
is a series of nonlinear transformations of the input. In the paradigm of e2e
learning, higher representations can be extracted directly from the raw audio
signals. The architecture of the DL models are usually deep CNN and/or RNN
models.

the feature vector of the corresponding instance. We use the
AUDEEP toolkit [74] to implement the S2SAE method in
this study. Furthermore, we evaluate the effects of the back-
ground noise, namely, power levels are clipped below certain
predefined thresholds (—30, —45, —60, and —75 dB) in the
spectrograms.

5) End-to-End Learning: The term e2e can be referred to
a holistic paradigm, which connects the input to the output
by learned representations from data [75], [76]. In particu-
lar, for audio-based applications, it was found that using a
CNN to extract features from a waveform can be similar
to a Mel-filterbank that is able to automatically discover the
frequency decompositions [76]. For automatic speech recog-
nition (ASR), a deep bidirectional long short-term memory
(LSTM)-recurrent neural network (RNN) combined with a
connectionist temporal classification (CTC) output layer was
introduced in [77]. Motivated by the previous success of e2e
learning in analysis of music [76], speech emotion [78], and
snore sound [79], we investigate several e2e topologies by
using a series of CNNs [9] and/or RNNs [80] to extract
higher representations directly from the raw sound audio wave-
forms (see Fig. 7). We use our recent proposed open source
DEEPSELF toolkit [81] for the e2e learning models’ imple-
mentation. To avoid the vanishing gradient problem in RNN
training [82], we use LSTM [83] and gated recurrent unit
(GRU) [84] cells in the deep RNN models.

C. Evaluation Metrics

1) Unweighted Average Recall: To make a fair compari-
son with the current benchmark and future studies based on
MSC-COVID-19, we use the unweighted average recall (UAR)
as the main evaluation metric (e.g., to optimize the models’
hyperparameters on the dev set). UAR takes the data imbal-
ance characteristics into account [85], which can avoid an
overly optimistic evaluation by using the weighted average
recall (WAR), i.e., accuracy. Its value is defined as

Z?S{‘“ Recall; W
Nelass

where Recall; and N.,s are the Recall of the ith class and the

number of classes, respectively. The WAR (accuracy) can be

written as

UAR =

Nclass

WAR = ) ARecall;
i=1
N;

Aj = N )
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where A; is the weight for the ith class, N; is the number of
instances labeled as the ith class, and N is the total number
of instances.

We also show the confusion matrices of the best models to
provide the detailed results. In addition, a significance-level
test (one-tailed z-test [86]) is conducted when comparing two
algorithms. The results which show a p-value lower than .05
are regarded as significant.

IV. EXPERIMENTAL RESULTS

We will show the experimental results in this section. A
brief description of the experimental setup will be given at
first.

A. Setup

To make this study reproducible and sustainable, we
use exclusively open-source toolkits, including OPENSMILE
[56], [57], OPENXBOW [65], DEEPSPECTRUM [67],
AUDEEP [74], and DEEPSELF [81]. All experiments for
running these aforementioned toolkits are implemented as
Python scripts. For implementing the SVM model, we use
the Python sklearn' toolkit (a linear kernel is selected for this
study), which is based on the popular LIBSVM toolkit [87].
For training the e2e models, we investigate and compare
five topologies, single CNN, single RNN (GRU), and hybrid
CNN-+RNN (GRU). We also investigated LSTM cells when
training the RNNs, whereas their performances yielded to
GRU cells in the initial experiments. Therefore, we only use
GRU cells in training the deep RNNs, as they tend to be more
efficient. The candidates of hyperparameters of single CNNs
are 16 and 8 as kernel size, and 16 and 8 as stride size. We also
investigate hyperparameters of the RNNs, which are 1 and 2
as the number of RNN layers, and 10 and 50 as the number
of hidden nodes. The initialization of all the DL models is
generated via randomization (with a constant seed).

All the hyperparameters of the models are tuned and opti-
mized in a grid search strategy on the dev set, and applied to
the test set by training the merged data set of train and dev. In
the following result part, the dev results are only shown with
the optimal ones while the test results are the ones achieved
by the optimized model.

B. Results

The experimental results (UARs) are shown in Table IV
and the confusion matrices of the best models are illustrated
in Table V. In summary, the best models can reach a UAR
of 443 %, 44.4% and 55.3 % for the S Task, F Task, and
A Task, respectively. Among these results, one best result is
achieved by a single model (A Task) while the other two best
results are reached by a late fusion (majority vote) strategy of
multiple models (S Task and F Task). We need to note that
the current results have shown promising potential for future
emotion-aware IoMT applications by considering the current
limited data size and difficult annotation.

1 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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TABLE IV
RESULTS FOR THE BENCHMARKS OF THE MSC-COVID-19. C:
COMPLEXITY PARAMETER OF THE SVM. N.: CODEBOOK SIZE OF BOAW
SPLITTING THE INPUT INTO TWO CODEBOOKS (COMPARE-LLDS/
COMPARE-LLD-DELTAS), WITH TEN ASSIGNMENTS PER FRAME, AND
OPTIMIZED COMPLEXITY PARAMETER OF THE SVM. X: POWER LEVELS
THAT ARE CLIPPED BELOW FOUR GIVEN THRESHOLDS. N,p.: NUMBER
OF LAYERS IN THE LSTM/GRU/CNN MODELS FOR E2E LEARNING.
UAR: UNWEIGHTED AVERAGE RECALL. S: SLEEP QUALITY ESTIMATION
(CHANCE LEVEL: 33.3 % OF UAR); F: FATIGUE ESTIMATION (CHANCE
LEVEL: 33.3 % OF UAR); A: ANXIETY ESTIMATION (CHANCE LEVEL:
33.3 % OoF UAR). THE BEST RESULTS ON THE DEV AND TEST SETS ARE
HIGHLIGHTED IN BOLD FONT. THE BEST RESULTS ON THE TEST
SET ARE ALSO MARKED WITH A GRAY BACKGROUND

UAR [%] S F A

Dev Test Dev Test Dev Test
C OPENSMILE: COMPARE func. + SVM
1073 21.7 58.4 479 36.4 443 56.2
1074 19.7 62.2 48.0 41.0 45.3 55.3
1073 23.7 49.6 38.6 37.5 44.0 49.5
1072 30.2 44.0 38.7 31.4 41.8 38.0
107! 29.0 48.0 38.7 29.9 41.8 332
1 29.0 48.0 38.7 29.7 41.8 332
N¢ OPENXBOW: COMPARE BoAW + SVM
125 36.0 333 31.6 31.1 65.4 46.8
250 35.6 344 39.7 34.5 59.7 44.8
500 28.5 36.5 38.0 36.5 66.7 41.1
1000 323 40.9 31.5 34.2 56.7 452
2000 29.0 359 36.6 43.0 56.7 422
Network DEEPSPECTRUM + SVM
AlexNet 45.7 24.7 34.6 37.1 453 39.1
GoogLeNet 37.6 26.8 422 30.7 54.7 33.0
ResNet 50 33.8 45.7 35.0 37.3 46.4 42.7
VGG 16 38.7 27.2 41.2 22.2 38.9 34.6
VGG 19 432 40.2 46.2 34.7 36.5 40.2
X AUDEEP: RNN + SVM
-30dB 38.4 35.5 33.0 32.6 60.8 32.1
-45dB 35.4 339 34.3 33.6 43.8 30.8
-60dB 38.8 30.2 404 29.7 58.2 39.2
-75dB 339 41.9 38.7 41.9 39.4 384
fused 354 30.2 434 40.6 539 40.4
Topology DEEPSELF: E2E, N j,=2
CNN 39.2 349 41.5 333 35.8 25.4
RNN 49.4 52.6 40.8 38.0 47.9 433
CNN+RNN 52.0 35.1 40.4 254 44.7 279
n Fusion of n-Best
3 - 43.3 - 42.8 - 49.0
4 - 44.3 - 42.1 - 53.7
5 - 36.0 - 444 - 43.8

For the S Task, the best single model is trained by large-
scale acoustic features and an SVM classifier. Unlike the
performance for the D Task, TL-based models perform worst
when compared with other methods (even lower than chan-
cel level). The S2SAE models are also owning UARs lower
than 33.3 %, while e2e models and BoAW models are slightly
higher or only reaching this level. When looking at the confu-
sion matrix of the best model [see Table V(a)], “Good” is the
easiest category to be recognized while “Normal” is the most
difficult one (easily to be incorrectly classified as “Bad”).

For the F Task, all the models produce higher UARs
than chance level (33.3 %). The classic ML model (by large-
scale acoustic features and SVM) and the S2SAE meth-
ods occupy the first and the second best single model
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TABLE V
NORMALIZED CONFUSION MATRICES (IN [%]) OF THE BEST MODELS IN EACH TASK ON THE TEST SET. S TASK: LATE FUSION OF
OPENSMILE: COMPARE FUNC. + SVM, C: .01; DEEPSELF: E2E CNN+RNN; OPENXBOW: COMPARE BOAW +SVM, C: .01, N.:
125; AUDEEP: RNN+SVM, C: .1, X: —60DB. F TASK: LATE FUSION OF OPENSMILE: COMPARE FUNC. +SVM, C: .0001;
AUDEEP: RNN+SVM,C: .1, X: FUSED; DEEPSPECTRUM: VGG 19 +SVM, C: .01; oPENXBOW: COMPARE BOAW +SVM, C: 1.0, N,: 250;

DEEPSELF: E2E CNN, CHANNEL: [3, 6], KERNEL SIZE:

[16, 8], STRIDE SI1ZE: [16, 8], LEARNING RATE: .0001. A

TASK: OPENSMILE: COMPARE FUNC. +SVM, C: .0001. (a) S TASK (UAR = 44.3 %, CHANCE LEVEL: 33.3 %). (b) F TASK (UAR = 44.4 %,
CHANCE LEVEL: 33.3 %). (¢) A TASK (UAR = 55.3 %, CHANCE LEVEL: 33.3 %)

(a)

Pred -> Good Normal Bad
Good 28.1 219
Normal 0.0 40.0
Bad 28.6 28.6
(b) (©)
Pred -> Mild Moderate Severe Pred -> Mild Moderate Severe
Mild 40.9 40.9 18.2 Mild 25.0 18.7
Moderate 7.7 50.0 Moderate 38.1
Severe 10.0 40.0 50.0 Severe

positions (41.0 % and 40.6 %), respectively. The best results
by the BoAW approach and the TL method are comparable
(34.5% versus 34.7 %) and the e2e model’s best result has
only reached chance level. For the best model [see Table V(b)],
“Severe” has the highest recall while “Mild” yields the low-
est recall. However, both the two aforementioned categories
have a large proportion of instances that are incorrectly rec-
ognized as “Moderate,” which is easy to be wrongly grouped
into “Severe.”

For the A Task, the model trained by large-scale acoustic
features and SVM classifier reaches the highest UAR (55.3 %).
The e2e model reaches a second best single model position
when having a UAR of 43.3 % by only using the deep RNN
architecture (with GRU cells). Then, the BoAW-based model
is the third best single model showing a UAR of 41.1 % while
the S2SAE and TL-based models yield only chance level.
When looking at the confusion matrix of the best model [see
Table V(c)], we may find that “Mild” and “Severe” both have a
proportion of instances to be wrongly predicted as “Moderate.”

The late fusion of models cannot generate significantly
higher results than the best single models. Only for the S
and F Tasks, the fused models can have a slight improvement
compared to the best single models.

V. DISCUSSION

We now give a discussion on findings, limitations, and
perspectives of this study.

A. First Findings

It is encouraging to see that our proposed CA-based mod-
els have a good performance in monitoring the physical and/or
mental status of the COVID-19 patients. On the one hand, as
we indicated in our preliminary surveys [18] and studies [54],
CA-based methods should have a promising capacity in help-
ing diagnosis, precaution, and management of the COVID-19
epidemic. On the other hand, we should not be overoptimistic
due to one possible factor that could be leading to such good

performances. The MSC-COVID-19 database has a compa-
rably high quality based on a complicated human involved
preprocessing step. Nevertheless, in real clinical or daily life
practice, it cannot be obtained in such an ideal condition. We
should consider more advanced technologies to eliminate the
noises, interference, and reverberations.

For all the tasks, the best final results (the baselines)
are significantly higher than the corresponding chance level
(» < 0.05 by one-tailed z-test). For the classic ML models,
specifically for large-scale acoustic features trained models
(see Table IV), the results are robust for multiple tasks in
this study. It can be noted that as observed in this preliminary
investigation, human hand-crafted features (with clear defini-
tions and physical meanings) are worth exploring. In addition,
limited to the current data size, the DL-based models may have
been restrained in their capacities in learning more generalized
features.

Management and daily monitoring of the patients’ physical
and mental status is a crucial task. We are encouraged by the
current results (even though not perfect, yet) for using voices
to estimate sleep quality, fatigue, and anxiety degrees. In par-
ticular, we have seen that even when only using the deep RNN
(with GRU cells) architecture and the audio waveform as the
input, one can reach a UAR of 43.3 % (as the second best sin-
gle model) for the A Task. For the S and F Tasks, a late fusion
has resulted in a slight improvement, which is worth further
studying. For these three computational paralinguistics anal-
ysis tasks, the COMPARE feature set shows good robustness
due to its design in the context of its original target usage.

B. Limitations and Perspectives

First, the fundamental investigation of the relationship
between the acoustic features and the pathological character-
istics of COVID-19 is still lacking. Before giving any solid
conclusion, we need to collect a larger size of COVID-19
patients’ speech data. Additionally, the anthropometric param-
eters and the ethnics of the patients should be taken into
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account. We believe that as a global crisis, COVID-19 cannot
be beaten by only one single country or one single field of
science. In the future, we aim to consider collecting the voice
data globally and discover the characteristics of COVID-19
patients’ voices internationally.

Second, more advanced SP techniques should be intro-
duced. Similar to our previous findings in snore sound
studies [47], [48], wavelet transformation-based features can
be superior in multiresolution analysis to the Fourier
transformation-based features, which occupy the main part
of the COMPARE feature set. Besides, one should consider
exploring the learned features by DL models by introducing
attention mechanisms [88].

Third, data scarcity is a challenging issue for almost all of
the health-related AI applications. In future work, we should
investigate the ML strategies of unsupervised learning [89],
semisupervised learning [90], active learning [91]-[93], and
cooperative learning [94], to enrich the COVID-19 speech
corpus. We should also consider introducing generative adver-
sarial networks (GANSs) to generate more sample instances
with a reasonable distribution [95], [96].

Last but not least, to build an explainable AI (XAI)
system [97] for CA-based COVID-19 detection and manage-
ment usage, we need to reach a close collaboration of experts
from a multidisciplinary background, including medicine and
acoustics.

VI. CONCLUSION

We introduced a novel multitask speech corpus (MSC-
COVID-19) for COVID-19 research in this study. To the best
of our knowledge, MSC-COVID-19 is the first comprehensive
CA-based database that can be used for COVID-19 research
purpose. Benchmarks using both classic ML and state-of-the-
art DL methods have shown promising preliminary results of
using CA for fighting against COVID-19. In particular, we
explored the feasibility to evaluate the patients’ physical and/or
mental status from their voices. We believe that CA-based
methods have a great potential to develop noninvasive, cheap,
and convenient intelligent systems and/or smart devices to help
cope with the crisis caused by contagious diseases. In future
work, these proposed multitask CA learning technologies for
emotion-aware assessment should be implemented as smart-
phone apps or embedded in existent ambient audio intelligence
connected to the Internet.
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